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Generative 3D Mesh Modeling with Text-to-Texture Generator
JIALUO LI* and ZIRU HUANG
Our project presents an extension to the MeshDiffusion model [Liu et al.
2023], incorporating class conditioning to enable the generation of 3D
meshes based on input class labels (5 categories are availiable). Addition-
ally, we employ a pre-trained 2D diffusion model to distill knowledge, align
textures with input textual descriptions. This integration results in an effec-
tive method for imparting textures onto 3D meshes, facilitating a seamless
connection between class-based mesh generation and texture synthesis.

Additional Key Words and Phrases: 3D Mesh Generation, Diffusion Model,
Class Conditioning, Texture Synthesis, 2D Distillation, MeshDiffusion, Gen-
erative Models, Computer Graphics.
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1 INTRODUCTION
Building upon theMeshDiffusion framework, we introduce an exten-
sion that incorporates class conditioning, allowing users to influence
the generated 3D meshes based on specified class labels. The inclu-
sion of class information enhances the model’s versatility, enabling
the synthesis of meshes tailored to specific categories.
Furthermore, to complement the geometric details, we propose

the integration of a pre-trained 2D diffusion model utilizing the
knowledge distillation technique [Gao et al. 2022]. This secondary
model is employed to align textures with textual descriptions, pro-
viding a means to seamlessly associate visual details with input
attributes. The combination of class-conditioned 3D mesh genera-
tion and texture synthesis through 2D diffusion provides a method
to generate textured mesh.

In this report, we present the details of our extended MeshDiffu-
sion model, the incorporation of class conditioning, and the integra-
tion of a 2D diffusion model for texture alignment. We demonstrate
the effectiveness of our approach through experimental results,
showcasing the model’s ability to generate diverse and category-
specific 3D meshes with corresponding textures.

2 METHODOLOGY

2.1 Mesh Parameterization
In order to parameterize the mesh into the neural network, we have
adopted the Deep Marching Tetrahedra (DMTET) framework [Shen
et al. 2021]. By this framework, the mesh is represented using an
SDF encoded with a deformable tetrahedral grid (See 1). Every grid
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vertex stores 3D offset (difference from the initialization) and its
SDF value. In addition, we augment tetrahedral grids to cubic grids
for better extracting features from 3D CNN layers.

Fig. 1. Mesh Representation Using Deformable Grids

2.2 Class-Conditioned Diffusion Model
Our project builds upon the general framework established by the
Latent Diffusion Model [Rombach et al. 2022], as illustrated in Fig-
ure 2. We have adapted this architecture by incorporating class
embeddings and classifier guidance, enhancing its capabilities for
our specific application [Dhariwal and Nichol 2021].

Fig. 2. Latent Diffusion Model Structure

2.2.1 Class Embedding.

• Concatenate the input of Resnet block and the pre-defined
class embedding

• Use Cross-Attention block to extract the features (See 3).

2.2.2 Classifier Guidance. Furthermore, we employ classifier guid-
ance to refine the generation process. This approach involves train-
ing an auxiliary classifier, leveraging the encoder component of the
Unet architecture as its foundation [Dhariwal and Nichol 2021].

2.3 2D Distillation Based On Pretrained Diffusion Model
We have integrated the Stable Diffusion model, drawing inspiration
from the DreamFusion framework [Poole et al. 2022]. The process
begins with the input mesh, which is rendered alongside a trainable
texture. This composite is then fed into the diffusion model. The
optimization of the texture is guided by a loss function that quanti-
fies the discrepancy between the predicted noise from the diffusion
model and the ground truth data (See 4).
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Fig. 3. The Detailed Structure Of Class-Conditioned Model

2.4 Result
2.4.1 Experiment Details. In our training dataset for the class con-
ditioned diffusion model, we have selected five specific categories
from ShapeNet [Chang et al. 2015]: planes, tables, chairs, rifles, and
cars.

Through our experimental observations, we have determined that
initializing the texture generation process with data derived from
stable diffusion outperforms random initialization. This is because
the former method leads to a more rapid convergence.
Furthermore, we have explored an alternative mesh representa-

tion through voxels, utilizing themarching cubes algorithm [Lorensen
and Cline 1987]. The outcomes of this approach are depicted in the
subsequent figures.

2.4.2 Generated Results. Here, we present the resulting figures
from our experiments, as illustrated in figure 5, 6, 7.

Fig. 5. The Generated Mesh With Voxel Based

3 DISCUSSION AND LIMITATIONS

3.1 Main Challenges
3.1.1 Environment Configuration. Our primary implementation re-
lies on the codebase fromMeshDiffusion. Unfortunately, the GitHub
repository associated with this paper provided minimal guidance on
environment configuration, which led to a week-long struggle to set
up the necessary environment. This process was further complicated
by numerous bugs encountered during the attempt to reproduce the
results.

3.1.2 Data Preprocess. Before initiating the training process for our
model, it’s essential to convert the raw mesh data (in .obj format)
into the DMTet format. However, this preprocessing step, which
can take between 20 to 30 minutes for a single mesh, has led us to
reconsider our approach. The sheer volume of preprocessed data
required makes our idea of generating meshes from text inputs
impractical.

3.1.3 Computing Resource. Consider the constraints of our comput-
ing resources, which necessitate approximately three days for each
checkpoint training, we face limitations in conducting extensive
experimentation to identify the optimal checkpoint within our time
constraints. Consequently, we have adopted a strategy of period-
ically assessing the model’s performance to ensure progress and
make informed decisions.

3.2 Limitations
In fact, the quality of our generated outputs is not entirely sat-
isfactory. The meshes produced often exhibit numerous cavities,
which can compromise their structural integrity. Additionally, the
text-to-texture generator faces challenges when converging to a
stable output, particularly when the input text is complex. These
issues highlight areas where further refinement and optimization
are needed to improve the reliability and consistency of our model’s
performance.

4 CONTRIBUTION STATEMENT
In our project, I took on the role of developing the texture genera-
tion code, leveraging the MeshDiffusion codebase as a foundation.
Additionally, I crafted an interactive interface for immersive omnidi-
rectional viewing of the generated meshes. I was also instrumental
in conducting the majority of the experiments to validate our results.
Our GitHub repository, which houses our project, can be found here,
and for a more comprehensive understanding, our project website
is available here.
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Fig. 4. The Structure of Texture Generator

Fig. 6. The Generated Mesh With Class-Condition

Fig. 7. The Generated Textured Mesh With Text Input

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: August 2024.



343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

4 • Jialuo Li* and Ziru Huang

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam Paull, and
Weiyang Liu. 2023. MeshDiffusion: Score-based Generative 3D Mesh Modeling.
arXiv:2303.08133 [cs.GR]

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’87). ACM, New York, NY,
USA, 163–169. https://doi.org/10.1145/37401.37422

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion:
Text-to-3D using 2D Diffusion. arXiv:2209.14988 [cs.CV]

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 [cs.CV]

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Syn-
thesis. arXiv:2111.04276 [cs.CV]

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: August 2024.

https://arxiv.org/abs/2303.08133
https://doi.org/10.1145/37401.37422
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2111.04276

	Abstract
	1 Introduction
	2 Methodology
	2.1 Mesh Parameterization
	2.2 Class-Conditioned Diffusion Model
	2.3 2D Distillation Based On Pretrained Diffusion Model
	2.4 Result

	3 Discussion and limitations
	3.1 Main Challenges
	3.2 Limitations

	4 Contribution Statement
	References

