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Abstract

Traditional diffusion models have achieved notable suc-
cess in photorealistic image synthesis, but they struggle with
reproducing nuanced visual elements like mirrors and re-
flections, leading to less authentic results. To address this
challenge, we propose two approaches: (1) supervised fine-
tuning (SFT) on a carefully curated dataset of real-world
images featuring mirrors and reflections, and (2) reinforce-
ment learning (RL) using a novel reward model designed
specifically to assess the accuracy of reflections. Our ex-
periments show that while SFT offers some improvement in
the quality of reflections, it is relatively limited. In contrast,
the RL approach, guided by our custom reward model, sig-
nificantly enhances the realism of the generated reflections.

1. Introduction
Diffusion models have demonstrated significant ad-

vancements in generative modeling, particularly in photo-
realistic text-to-image synthesis, where they deliver state-
of-the-art results in image quality and fidelity [5,12,17,18].
However, these models exhibit limitations when tasked with
generating nuanced visual elements, such as realistic mir-
rors and reflections, which are critical for the authenticity of
synthesized scenes. This deficiency not only detracts from
the visual realism but also highlights a gap in the model’s
comprehension of the complex interactions of mirror and
object in real-world environments.

The synthesis of mirrors and reflections poses a unique
challenge in computer vision and image generation, exac-
erbated by the limited availability of training samples fea-
turing these elements. Additionally, the lack of robust eval-
uation metrics further complicates the task of objectively
assessing the quality of generated reflections. Despite the
significance of this challenge, it has been largely overlooked
in the literature, and to the best of our knowledge, no prior
work has specifically addressed the generation of realistic
mirrors and reflections in the context of diffusion models.

In this report, we address the challenges of enhancing the

fidelity of reflections and mirror effects in diffusion-based
generative models, such as SD1.5 [17] and SDXL [15], by
exploring two approaches:

• Approach 1: Building upon extensive research in data-
driven mirror detection tasks [10, 11, 22], we manually
curated a dataset of 4,461 images, specifically selected for
their representation of mirrors and reflection phenomena
in real-world scenarios. This dataset was meticulously
filtered from these existing works to ensure relevance and
quality. To further enhance the utility of this dataset, we
employed GPT-4 [13] to generate detailed captions for
each image, which will serve as the foundation for sub-
sequent supervised fine-tuning (SFT).

• Approach 2: Inspired by the success of Reinforcement
Learning from Human Feedback (RLHF) in both lan-
guage models [3,14,23] and computer vision tasks [1,4],
we incorporate the DDPO [1] algorithm, a reinforcement
learning(RL)-based online training method, into our ap-
proach. We introduce a novel reward model specifically
designed to evaluate the correctness of reflection phenom-
ena in images, thereby guiding the training process to en-
hance the accuracy of reflection synthesis.

We wish to propose novel techniques and refinements that
specifically target the accurate reproduction of reflective
mirror surfaces and their associated visual phenomena.
Through a series of experiments and analyses, we aim to
push the boundaries of what is possible with diffusion mod-
els in the context of mirror and reflection synthesis, ulti-
mately contributing to more realistic and immersive visual
experiences.

2. Related Work

Diffusion models Given samples from a data distribu-
tion q(x0), along with a noise scheduling function αt and
σt as defined in [17], denoising diffusion models [5, 18]
are a class of generative models pθ(x0). These mod-
els feature a discrete-time reverse process characterized
by a Markov chain structure, expressed as pθ(x0:T ) =



∏T
t=1 pθ(xt−1|xt). Here, the distribution is represented by:

pθ(xt−1|xt) = N (xt−1;µθ(xt),
σ2
t|t−1

σ2
t−1

σ2
t I). (1)

The supervised training process involves minimizing the ev-
idence lower bound (ELBO) associated with this model [8].
The SFT objective function can be expressed as:

LSFT = Ex0,ϵ,t,xt,c

[
ω(λt)∥ϵ− ϵθ(xt, t, c)∥22

]
, (2)

where ϵ ∼ N (0, I), t ∼ U(0, T ), and xt ∼ q(xt|x0) =

N (xt;αtx0, σ
2
t I). The parameter λt =

α2
t
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represents the
signal-to-noise ratio [8], ω(λt) is a predetermined weight-
ing function, which is commonly chosen to be constant [5]
and c is the conditioned text embedding.

Reward modeling There exists a significant disparity be-
tween the pre-training objectives of generative models and
the nuanced intents that human users seek to achieve. This
gap has prompted considerable research efforts aimed at im-
proving alignment between model outputs and human pref-
erences. A common approach to bridge this gap has been
the application of RLHF, where a reward model is con-
structed to guide the generative process toward outputs that
better reflect human intent [1,4,9,20,21]. While RLHF has
shown promise, the majority of existing work in this area
has been concentrated on optimizing two primary aspects:
aesthetic quality [9, 20, 21] and text-image alignment [1, 4].
These focuses, while important, have led to a relative ne-
glect of another critical dimension of alignment—namely,
alignment with reality. In this report, we address this gap
by proposing a novel reward model designed specifically
to assess and score anomalies in reflections within gener-
ated images. Our proposed model evaluates these reflection
anomalies and uses the resulting scores to guide the fine-
tuning of the original generative model.

Learning from feedback Upon receiving feedback from a
reward model, various training algorithms are employed to
incorporate this feedback into model learning. These algo-
rithms generally fall into two categories: RL-based methods
[1, 4] and DPO [16, 19] techniques. A prominent RL-based
method is DDPO [1], which frames the denoising process
as a Markov Decision Process to optimize diffusion mod-
els. Additionally, DPOK [4] modifies DDPO [1] by incor-
porating a KL-divergence constraint to maintain proximity
to the original distribution. On the other hand, DPO [16,19]
directly optimizes models using a binary cross-entropy ob-
jective, avoiding the complexities of RL and reward model-
ing. In our report, we mainly use DDPO [1] as the training
algorithm.

Figure 1. The developed UI for fast labeling tasks, showing an
example image along with controls for navigation and label selec-
tion.

3. Method

3.1. Approach 1: Offline SFT

3.1.1 Dataset Collection

Building on prior research in data-driven mirror detection,
which involved the compilation of real-world images fea-
turing mirrors, we have integrated and curated datasets from
MSD [22] and PMD [10] for this task. To be more specific,
we categorized the images into three distinct classes for a
systematic filtering process.
• Label 1: For images where the primary focus is on an

object and its reflection, with the object, reflection, and
mirror all visible.

• Label 2: For images centered on a scene where the mirror
reflects the environment rather than a specific object.

• Label 3: For images that do not fit into the above cate-
gories.

For clarity, Fig. 2 provides representative examples corre-
sponding to each of these categories.

To streamline the labeling process, we developed a user
interface (UI) designed for efficient annotation, as illus-
trated in Fig. 1. This UI allows users to quickly classify
images into predefined categories by navigating through
them and selecting the appropriate label. The interface is
designed to minimize the time required for annotation, en-
hancing productivity while maintaining accuracy.

Given that images labeled as Label 3 are likely to be
noisy and not aligned with the primary focus of our study,



we proceeded to retain only the images classified under La-
bel 1 and Label 2. After the manual labeling and subse-
quent filtering of Label 3 images, our final dataset com-
prises 4,461 images, with 2,782 images categorized as La-
bel 1 and 1,661 images categorized as Label 2. For prepa-
ration of the following SFT, we employed GPT-4 [13] to
generate descriptive captions for each image using the fol-
lowing prompt, ultimately resulting in approximately 4,000
text-image training samples:

User Prompt

You are now an image captioner. Please describe the im-
age in detail, using no more than 15 words. The generated
caption must include the word ’mirror.’ [Image]

3.1.2 Supervised Finetuning

Since our offline dataset comprises exclusively real-world
images, all of which exhibit true reflection phenomena,
identifying negative training samples that demonstrate re-
flection anomalies within a similar distribution will be a
significant challenge. Consequently, this dataset’s inher-
ent characteristics also complicate the application of RL or
DPO [16] algorithms for fine-tuning, as these methods typ-
ically require a more diverse range of training samples, in-
cluding both positive and negative examples, to effectively
optimize performance. Therefore, we opted to employ SFT
as the primary method for our experiments. This approach
allows us to focus on refining the model’s performance us-
ing the high-quality, real-world data available, even though
it lacks the negative samples necessary for certain advanced
fine-tuning techniques.

3.2. Approach 2: Online RL Finetuning

In this section, we introduce a novel reward model de-
signed to assess the accuracy of reflection phenomenon in
images. Given the challenges in evaluating mirrors and re-
flections, our method focuses on generating images with
one mirror, an object within it, and another outside, with-
out considering detailed pose correlations between objects.
To optimize performance, we employ the DDPO frame-
work [1], which refines the diffusion model using reinforce-
ment learning.

3.2.1 Reward model design

We utilize an open-vocabulary object detector D to identify
mirrors and objects within the images, using thresholds c1
and c2. The total reward r is calculated as:

r = rmirror + robjs (3)

The reward for detecting mirrors rmirror is:

rmirror =


0 if no mirrors
qa if multiple mirrors
qb if one mirror

(4)

where 0 < qa < qb. The reward for detecting objects robjs
is:

robjs =


0 if no objects
q if objects without mirrors
rin + rout otherwise

(5)

For object detection within the mirror, the bounding boxes
of the object bobj and the mirror bmirror are considered, with
their intersection denoted as binter. An object is classified
as being inside the mirror if the ratio S(binter)

S(bobj)
exceeds the

threshold c3, where S(·) represents the area. The reward for
detecting objects inside and outside the mirror are specified
as:

rin =

{
0 if no objects inside mirror
qin if objects inside mirror

(6)

rout =

{
0 if no objects outside mirror
qout if objects outside mirror

(7)

By setting 0 < q < qin = qout, this model encourages the
generation of images with exactly one mirror and correctly
placed objects inside and outside it. We will set the thresh-
old c1 = 0.35, c2 = 0.25 and c3 = 0.85, and set the reward
values qa = 1, qb = 1.5, q = 0.5, qin = qout = 1.5 in the
following sections. The full structure of our reward model
is shown in Fig. 3.

3.2.2 Finetuning with RL

The complete pipeline is illustrated in Fig. 5. We utilize
DDPO framework [1], which formulates the diffusion pro-
cess as a Markov Decision Process (MDP), aiming to op-
timize the diffusion model pθ by directly maximizing the
expected cumulative reward derived from the generated out-
puts. Given a pre-trained diffusion model pθ and a reward
model r, the objective of DDPO is to maximize the expected
reward over all possible trajectories:

J(θ) = Ec∼p(c),x0∼pθ(x0|c)[r(x0, c)], (8)

where c represents the text prompt. The gradient of this
objective can be estimated using the importance sampling
technique as follows:

wt =
pθ(xt−1|xt, c)

pθold(xt−1|xt, c)
(9)



Figure 2. Representative samples for each category: Label 1: The focus is on specific objects and their reflections within the mirror,
indicated by red circles around both the objects and their corresponding reflections. Label 2: The focus is a broader scene with the mirror
reflecting the environment, shown by blue circles around the mirror and the reflected content. Label 3: Images that do not conform to the
criteria of Labels 1 or 2, depicted by a yellow question mark next to scenes.

Figure 3. Illustration of the reward model used to refine diffusion models for generating images with mirrors. The model first detects
mirrors and assigns rewards based on their number: no reward for no mirrors, a lower reward for multiple mirrors, and the highest reward
for one mirror. The focus then shifts to the mirror with the highest detection score, assessing the placement of objects inside and outside
the mirror. Additional rewards are granted for correctly positioned objects, improving the realism of reflections.

∇θJ ≈ E

[
T∑

t=0

wt∇θ log pθ(xt−1|xt, c) · r(x0, c)

]
, (10)

where pθold denotes the policy from the previous iteration,
used as the baseline for importance sampling. In our adap-

tation of this framework, we replace the reward model with
our reward function described in the previous section.



Figure 4. Two examples demonstrating our reward function. The left image earns the full reward of 4.5 by detecting one mirror, an object
inside, and an object outside the mirror (1.5 points each). The right image receives a reward of 3.0, with no points for an object outside the
mirror, as none is present.

Figure 5. Architecture of the proposed pipeline for fine-tuning diffusion model using reinforcement learning. Beginning with a text prompt,
the diffusion model generates a set of images, which are subsequently evaluated by the designed reward function. The calculated reward
is utilized to iteratively refine the diffusion model, thereby improving its capacity to produce generations that align more closely with the
defined reward criteria.

4. Experiments 1: Supervised Finetuning

4.1. Experimental Setup

In this experiment, we employed SDXL [15] as the pre-
trained diffusion model and finetuned the U-Net architec-
ture utilizing the objective outlined in Eq. (2) on our cus-
tom dataset. The finetuning process was conducted with
LoRA [7] weights, specifically at a rank of 8, and a learning
rate of 10−7, with a warmup phase over the initial 400 steps.
The training was executed on 4 NVIDIA RTX8000 GPUs,
spanning 4000 training steps. We adopted a local batch
size of 2 and a gradient accumulation step of 4. Two sep-

arate finetuning experiments were conducted, each trained
on datasets labeled as Label 1 and Label 2, respectively.

Evaluation For evaluation, we randomly selected 100
captions from the original dataset for each experiment to
assess performance changes within the training set. //Addi-
tionally, we generated 50 captions that were not present in
the original dataset but adhered to the original settings as a
test set.// The DDPM sampler [5] was utilized during evalu-
ation, with 30 denoising steps and a classifier-free guidance
scale of 7.5 [6], generating one image per selected prompt.
To evaluate both overall changes and specific effects using a
fixed random seed, we generated two groups of images: one



with a variable random seed to capture general performance
trends, and another with a fixed seed to assess changes un-
der consistent conditions.

Evaluation Metrics To facilitate a more detailed analy-
sis, we established a scoring system to evaluate the quality
of the generated images based on the depiction of mirrors
and reflection:
• Score 0: No mirror is present in the image.
• Score 1: A mirror is present, but there are no contents

visible either inside or outside the mirror.
• Score 3: A mirror is present, but contents are visible only

either inside or outside the mirror, not both.
• Score 6: A mirror is present with contents visible both

inside and outside the mirror; however, the pose relation-
ship between these contents is incorrect.

• Score 10: A mirror is present with contents visible both
inside and outside the mirror, and the pose relationship
between these contents is nearly correct.

4.2. Results

The scores and their corresponding proportions are illus-
trated in Fig. 6. The initial step (Step 0) corresponds to the
pretrained diffusion model, serving as the baseline for com-
parison.

Limited Performance Gains from SFT The results in-
dicate that SFT offers minimal performance improvement
over the baseline. This limited enhancement can likely be
attributed to the suboptimal quality of the dataset. The
model appears to struggle in capturing the essential charac-
teristics of reflections in real-world scenarios, as evidenced
by the low scores across training steps. Extended training,
particularly beyond 1,000 steps, seems to exacerbate the sit-
uation, leading to overfitting to the offline dataset and ulti-
mately degrading the model’s performance.

5. Experiments 2: RL Finetuning
5.1. Experimental Setup

In this experiment, we employed YOLO-World [2] as
our open-vocabulary object detector and utilized the pre-
trained Stable Diffusion v1.5 model [17] to fine-tune the
U-Net architecture. The fine-tuning was performed using
LoRA [7] weights, with a learning rate of 3×10−4. During
each training step, we sampled 32 images per GPU, exe-
cuted over 50 denoising inference steps, with a classifier
guidance scale set to 5. The training process was carried
out on four NVIDIA RTX8000 GPUs, encompassing a to-
tal of 3̃000 training steps. We used a local batch size of 1
with a gradient accumulation step of 1. The training prompt
set consisted of 400 different animals, each following the
template ”{animal} and its reflection in the mirror.”

Evaluation For the evaluation, we curated a set of 100
test prompts, each representing an animal not included in

the training set, and adhering to the same template used dur-
ing training. One image was generated per prompt using the
same sampling settings as in the training phase. The aver-
age reward was computed using the proposed reward model.
The performance on the test set is presented alongside the
training set results, as illustrated in Fig. 7.

5.2. Results

Performance Enhancement through DDPO As illus-
trated in Figure 7, the implementation of the DDPO method
demonstrates a substantial increase in the mean reward for
the generated images on the training set, as training steps
progress. However, it is important to note that after ap-
proximately 2000 training steps, the model exhibits signs
of overfitting, as evidenced by the declining performance
on the test set.

Impact of the Proposed Reward Model Figure Fig. 8
presents a set of visual results, which highlight the effec-
tiveness of our proposed reward model. The images gener-
ated under the guidance of this model successfully depict a
mirror and the corresponding objects both inside and out-
side the mirror. In contrast, the pre-trained Stable Diffusion
model fails to accurately generate reflections and mirrors.
Nonetheless, it should be noted that our reward model cur-
rently does not account for pose correspondence between
objects, leading to instances where the reflections in the
generated images are not entirely accurate.

6. Division of Labor
Jialuo Li: Responsible for the collection and preprocess-
ing of the dataset, finetuning the model using SFT tech-
niques, and conducting evaluation of the model’s perfor-
mance based on the finetuning results, which included set-
ting up the finetuning environment, selecting appropriate
hyperparameters, and analyzing the outcomes to ensure
model efficacy.
Ziru Huang: Responsible for the collection and prepro-
cessing of the dataset, designing the reward model used for
RL, and finetuning the model using RL techniques. Ad-
ditionally, conducted a thorough evaluation of the model’s
performance after RL finetuning, which involved assessing
the model’s alignment with the desired outcomes.

7. Conclusion
In this report, we addressed the challenge of improving

the generation of mirrors and reflections in diffusion mod-
els through two main approaches: SFT and RL with a novel
reward model. Our findings indicate that while SFT pro-
vided limited improvements, likely due to the quality and
composition of the dataset, the RL-based approach demon-
strated a significant enhancement in the accuracy and real-
ism of synthesized reflections. These results underscore the



(a) Proportions of scores and average score over training steps using fixed
seeds, trained on Label 1 dataset.

(b) Proportions of scores and average score over training steps using ran-
dom seeds, trained on Label 1 dataset

(c) Proportions of scores and average score over training steps using fixed
seeds, trained on Label 2 dataset.

(d) Proportions of scores and average score over training steps using ran-
dom seeds, trained on Label 2 dataset.

Figure 6. Model performance across various training steps, comparing fixed and random seeds.

Figure 7. Reward mean over training steps for both the training
and test sets. The blue line represents the reward mean for the
training set, while the green line represents the reward mean for
the test set. The observed gap suggests potential overfitting beyond
2000 training steps.

importance of robust training data and innovative reward
mechanisms in advancing generative model capabilities.

8. Future Work

There are numerous opportunities for future work that
we plan to explore. For example, constructing a more com-
prehensive datase would enable a more rigorous evalua-
tion of the SFT approach. Additionally, investigating the
collection of negative samples could facilitate subsequent
DPO training [16]. Furthermore, while our current reward
model successfully identifies general positional relation-
ships between objects, the challenge of capturing finer de-
tails—such as the precise pose relationships—remains un-
resolved and warrants further investigation.
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